
Products and Results Future Work

Background

Research Objectives

[1] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. 2003. TOSSIM: accurate and
scalable simulation of entire TinyOS applications. In Proceedings of the 1st international
conference on Embedded networked sensor systems (SenSys '03). ACM, New York, NY,
USA, 126-137. DOI=10.1145/958491.958506
http://doi.acm.org/10.1145/958491.958506

[2] N. Qwasmi, D. Smullen, R. Liscano, "Integrated development environment for
debugging policy-based applications in wireless sensor networks," The 4th International
Conference on Emerging Ubiquitous Systems and Pervasive Networks, 2013.

[3] Yanmin Zhu; Sye Loong Keoh; Sloman, M.; Lupu, E.; Yu Zhang; Dulay, N.; Pryce, N.,
"Finger: An efficient policy system for body sensor networks," Mobile Ad Hoc and Sensor
Systems, 2008. MASS 2008. 5th IEEE International Conference on , vol., no., pp.428,433,
Sept. 29 2008-Oct. 2 2008
doi: 10.1109/MAHSS.2008.4660033

[4] “Evaluating the Performance of RPL and 6LoWPAN in TinyOS” by Jeonggil Ko, Stephen
Dawson-Haggerty, Omprakash Gnawali, David Culler, and Andreas Terzis. In Proceedings
of Extending the Internet to Low power and Lossy Networks (IP+SN 2011), April 2011.

Policy programming enables autonomic, customized
behavior in wireless sensor networks (WSN),
augmenting basic subroutines with extensible
control logic. In WSN based on the tinyOS platform,
state introspection and debugging is challenging
and opaque; instrumentation embedded in WSN
application nesC code is required, and the process of
collecting data is difficult. Our state of the art Policy
IDE[2] began with limited simulators to collect and
display debugging data interactively.

Development has moved towards creating more
robust Policy IDEs. Our latest approach pairs policy
programing with advanced inter-node network
communications protocols at the transport layer,
replacing link-layer protocols’ low-level
communication with a new network stack. Policies
can now be used on IPv6, extending WSN
interoperability. Policy interaction between sensors,
network appliances, desktop and mobile computing
platforms will define the types of machine to
machine communications on the future Internet.
Additional benefits include simpler debugging,
visible execution trace, and a shortened WSN
application development lifecycle using real sensor
motes which can be debugged in development or in
the field.

The Internet of Things (IoT) is a novel paradigm
which is shaping the evolution of the future Internet.
The goal is to enable interaction among mobile
devices, desktop computers, network devices, and
sensors. This interaction occurs throughout the
Internet, local area, and personal area networks - in
the home, vehicles, and a multitude of other
environments. A simple and proven programming
approach for the management of distributed
systems is Policy Programming[3], and this has
proven particularly effective in surmounting design
challenges associated with tinyOS based WSN

Facilitating the Internet of Things with Policy Programming
Daniel Smullen, Ramiro Liscano

Faculty of Engineering and Applied Science University of Ontario Institute of Technology 2000 Simcoe Street North, Oshawa, Canada, L1H 7K4

Emulated Hardware Platform Only
Physical Hardware Platform (Runs Embedded

on Sensors)
Future Development

Goal

TOSSIM[1]

1. Policy IDE[2]

Real-time debugging of policy
programming using packet injection

FingerII[3]

Python GTK based GUI

2. TOSSERV (Centralized TOSSIM Service)

Uses XML-RPC with Python
Policy IDE becomes platform

independent

blip2.0 IPv6 Stack[4]

3. IPv6-enabled FingerII with UDP Shell

Introduces 6LoWPAN for 802.15.4
network layer

Interoperability with IPv6-capable
networks outside of 802.15.4

SupportDiscovery

Next step toward ubiquitous
policy programming in IoT

A
u

gu
st

 2
0

1
3

Policy Programming Research & Development Lifecycle

Ju
n

e/
Ju

ly
 2

0
1

3

Policy Engine

Feature
Innovation

Product

Basis

Platform

Timeline

M
ay

 2
0

1
3

Funding provided by:

UOIT Student Research Showcase 2013

References

1. The Policy IDE was developed by Nidal Qwasmi and
Daniel Smullen[2]. This concept was originally
designed to allow for policy programming to be
debugged, reducing the opacity in the development
process. Debug messages were collected from the
TOSSIM emulator[1] and displayed on a GUI in real
time. Viewing these messages while manipulating
policies on simulated devices allowed introspection
into the results of policies. Policy programming was
conducted using emulated sensor motes running
the FingerII policy engine core[3].

A new concept (dubbed SupportDiscovery) would
incorporate a policy discovery component that
enables the FingerII engine to perform reflection
and report on what device components, events, and
tasks are available for policy programming.
Development of a detailed architectural model for
this software component along with integrating the
Policy IDE with the IPv6-enabled FingerII would
allow for a more robust IDE to be created. This
would allow up to 2128 sensors per network layer to
be programmed with policies easily.

Original Policy IDE Deployment Diagram[2]

IPv6 WSN Configuration with Motes Running FingerII

devices. Developing energy efficient devices that
operate on small batteries autonomously for long
periods of time is a primary WSN design objective[4].
Reprogramming devices with policies yields less
network and processing overhead, which saves
power on battery operated sensors[3].

To date, most WSN applications are designed for one
specific application, using programming designed to
fulfil one limited role only. Policy programming
enables these same hardware devices’ programming
to become more adaptable and more flexible in
changing circumstances while maintaining overall
system autonomy and availability[3]. Developing
tinyOS nesC applications is challenging - there are
few libraries and only one set of development
tools[2]. Engineering applications for WSN toward
applications involving the IoT is on the cutting edge
of wireless technology, internet protocols, and
autonomic computing.

Offloading Emulation/Simulation using TOSSERV

Early SupportDiscovery Deployment Concept

2. The TOSSERV centralized
TOSSIM service was
developed, allowing the
Policy IDE and TOSSIM
device emulator/simulator
to become platform
independent. This also
allowed future versions of

TOSSIM to be interoperable with Policy IDE and
allowed for simulation to occur across a network
when desired, instead of localized on one machine.

3. The blip2.0 IPv6 network stack[4] was integrated
with the FingerII policy engine and a UDP shell,
allowing policy debugging to occur with real sensor
hardware. Introspection occurred by logging onto
actual motes and directly entering commands into
the shell, with feedback returned to the same
terminal session in real time. An edge router was
used to marshal interoperable traffic between the
802.15.4 6LoWPAN based sensor motes wireless
radio and wired/wireless external IPv6 networks.

Specialized policies, policy roles, or applications
using policies could be engineered on a large scale.

