acilitating The Internet Of Things With
Policy Programming

Supplementing the works presented in:

“Integrated development environment for debugging policy-based
applications in wireless sensor networks"

...and lessons learned since.

Daniel Smullen
Nidal Qwasmi

Ramiro Liscano

UNIVERSITY
wsene WU OF ONTARIO

m CRSNE |NSTITUTE OF TECHNOLOGY

Main Research and Development

Products
® Policy IDE
® Real-time debugging of policy programming
® GUI
® TOSServ

® Centralized TOSSIM Service
® Finger2IPv6

® Policy programming could now occur on real wireless sensor
devices, using IPv6

Code available on GitHub (2 dev. branches):

github.com/drspangle/tinyos-main/tree/Finger2IPv6
ithub.com/drspangle/tinyos-main/tree/TOSServ

UNIVERSITY
9 OF ONTARIO

INSTITUTE OF TECHNOLOGY

Policy IDE

Real-time debugging of policy programming using packet injection became
possible.

Main thrust of paper.
Debug messages collected from TOSSIM, displayed on GUI in real time.

TOSSIM Policy IDE
Sensor Mote {1}
Message-Passing Interface
<<component>> &l S <<component>> gl
<<component>> & Packet Handler = Java Message-Passing Backend
Finger ‘ |
<<component>> 8]
i Python Backend Code
Message Interface <<component>> a
<<gomponent>> & The packet AN Python GUI (GTK)
LED Component O handler forwards
LED policy messages
<<component>> & A to the Finger
™ component.
Timer Component Timer P

N

Policy IDE

® Viewing these messages and manipulating policies on
simulated devices allowed introspection into the results
of policies.

® Policy programming was conducted using emulated
sensor motes running the Finger2 policy engine core (by
Themistoklis Bourdenas).

UNIVERSITY
9 OF ONTARIO

INSTITUTE OF TECHNOLOGY

What's the point of policy
programming?

® If, then —logical inferences:

® Something like a rule-based system.

® Classically useful for network security:

® Firewalls.

® IDS.

® Special niche in the tinyOS world.

UNIVERSITY
9 OF ONTARIO

INSTITUTE OF TECHNOLOGY

Our special niche in tinyOS...

® Allows for extensible control logic.

® tinyOSis all about creating components:

® Pseudo-objects with events and actions.

® ... butif you want to change anything except a variable,
you have to re-flash the entire binary onto the device.

® Policy programming lets you tie it all together.

® Not as useful for very simple if conditions.
® Great for chains of inference.

® Great for making software robust to changing circumstances.

UNIVERSITY
® OF ONTARIO

INSTITUTE OF TECHNOLOGY

Leveraging the Event Driven System

® Policy programming is an application development
platform that lets you sandwich together the best of two
worlds:

® Event driven architecture of tinyOS.

® ‘Dumb’ functions.

UNIVERSITY
9 OF ONTARIO

INSTITUTE OF TECHNOLOGY

Why a Policy IDE became a logical
necessity...

® Policy programming is essentially an informal
programming language.
® Policies quickly become complicated

® Chains of inference can get long, fast.

® Debugging and testing...
® Facilities for triggering events, so actions can be evaluated.
® Facilities for viewing the output in an easy way.

® Rejoice - No more manual memory introspection!

UNIVERSITY
® OF ONTARIO

INSTITUTE OF TECHNOLOGY

Making Policy-Based Applications

Key design principles:

® Reprogramming over the air can be avoided by
introducing new policies, and/or updating old ones.

® Policies can be chained to one another, providing a robust
event-driven rule-based architecture for larger system
designs.

® Policies can be used in conjunction with highly optimized
low-level nesC code units as extensible control logic.

UNIVERSITY
® OF ONTARIO

INSTITUTE OF TECHNOLOGY

TOSServ

® Allows TOSSIM to sit in its own environment, happy with
it's old version of gcc 3 and peculiar build chain.

® Distributed from the Policy IDE client using xml-rpc
(Python).

® Needs further development.

UNIVERSITY
9 OF ONTARIO

INSTITUTE OF TECHNOLOGY

TOSServ

TOSServ

TOSSIM Simulator Functions| <<component>>

O

adjustSimulationParameter

TOSSIM Packet Functions

Policy IDE Client

<<component>> &l
TOSSIM
<<component>> &
PacketHandler
X1
injectPacket
1
<<component>> 2]

Mote

O

constructPacket

multiplex DBG messages into one

<<component>> £]
CommandProxy

g]| | xml-rpe-lib
CommandProxy O)
forwardPacketData
<<component>> g]
PacketConstructor

Server i

<<component>> &l
Debug Log

<<component>> &l
GTK GUI

Client i
UNIVERSITY

9 OF ONTARIO

INSTITUTE OF TECHNOLOGY

fec0::/128
IPv6 Block

Transitioning to IPv6

The basic picture laid out...

fec0::1/128

6LoOWPAN/IPvE
Edge Router

e Policy IDE
e TOSSIM

TOSSERV

UNIVERSITY
® OF ONTARIO

INSTITUTE OF TECHNOLOGY

Finger2IPv6

® Binding the Finger2 policy engine core with blip (Berkeley
Low-Power Internet Stack).

® Finger2 was previously bound to AMPacket, to work with
TOSSIM.

® TOSSIM doesn‘t support blip (due to low-level code
optimizations, very convenient but quirky tinyOS API
hacks).

UNIVERSITY
9 OF ONTARIO

INSTITUTE OF TECHNOLOGY

Finger2IPv6

® Now we can do what Policy IDE does from the command
line.

® Command-line interpreter similar to Python, except for Policy
Programming.

® Load, delete, enable, disable, and test policies.
® Next steps:
® GUlintegration.

® Anew language? Policy Definition Language.

® Self-discovery and network policy discovery.

UNIVERSITY
9 OF ONTARIO

INSTITUTE OF TECHNOLOGY

